981 resultados para Auditory cortex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most people intuitively understand what it means to “hear a tune in your head.” Converging evidence now indicates that auditory cortical areas can be recruited even in the absence of sound and that this corresponds to the phenomenological experience of imagining music. We discuss these findings as well as some methodological challenges. We also consider the role of core versus belt areas in musical imagery, the relation between auditory and motor systems during imagery of music performance, and practical implications of this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edges are important cues defining coherent auditory objects. As a model of auditory edges, sound on- and offset are particularly suitable to study their neural underpinnings because they contrast a specific physical input against no physical input. Change from silence to sound, that is onset, has extensively been studied and elicits transient neural responses bilaterally in auditory cortex. However, neural activity associated with sound onset is not only related to edge detection but also to novel afferent inputs. Edges at the change from sound to silence, that is offset, are not confounded by novel physical input and thus allow to examine neural activity associated with sound edges per se. In the first experiment, we used silent acquisition functional magnetic resonance imaging and found that the offset of pulsed sound activates planum temporale, superior temporal sulcus and planum polare of the right hemisphere. In the planum temporale and the superior temporal sulcus, offset response amplitudes were related to the pulse repetition rate of the preceding stimulation. In the second experiment, we found that these offset-responsive regions were also activated by single sound pulses, onset of sound pulse sequences and single sound pulse omissions within sound pulse sequences. However, they were not active during sustained sound presentation. Thus, our data show that circumscribed areas in right temporal cortex are specifically involved in identifying auditory edges. This operation is crucial for translating acoustic signal time series into coherent auditory objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The auditory system of monkeys includes a large number of interconnected subcortical nuclei and cortical areas. At subcortical levels, the structural components of the auditory system of monkeys resemble those of nonprimates, but the organization at cortical levels is different. In monkeys, the ventral nucleus of the medial geniculate complex projects in parallel to a core of three primary-like auditory areas, AI, R, and RT, constituting the first stage of cortical processing. These areas interconnect and project to the homotopic and other locations in the opposite cerebral hemisphere and to a surrounding array of eight proposed belt areas as a second stage of cortical processing. The belt areas in turn project in overlapping patterns to a lateral parabelt region with at least rostral and caudal subdivisions as a third stage of cortical processing. The divisions of the parabelt distribute to adjoining auditory and multimodal regions of the temporal lobe and to four functionally distinct regions of the frontal lobe. Histochemically, chimpanzees and humans have an auditory core that closely resembles that of monkeys. The challenge for future researchers is to understand how this complex system in monkeys analyzes and utilizes auditory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional specialization and hierarchical organization of multiple areas in rhesus monkey auditory cortex were examined with various types of complex sounds. Neurons in the lateral belt areas of the superior temporal gyrus were tuned to the best center frequency and bandwidth of band-passed noise bursts. They were also selective for the rate and direction of linear frequency modulated sweeps. Many neurons showed a preference for a limited number of species-specific vocalizations (“monkey calls”). These response selectivities can be explained by nonlinear spectral and temporal integration mechanisms. In a separate series of experiments, monkey calls were presented at different spatial locations, and the tuning of lateral belt neurons to monkey calls and spatial location was determined. Of the three belt areas the anterolateral area shows the highest degree of specificity for monkey calls, whereas neurons in the caudolateral area display the greatest spatial selectivity. We conclude that the cortical auditory system of primates is divided into at least two processing streams, a spatial stream that originates in the caudal part of the superior temporal gyrus and projects to the parietal cortex, and a pattern or object stream originating in the more anterior portions of the lateral belt. A similar division of labor can be seen in human auditory cortex by using functional neuroimaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel “what” and “where” processing by the primate visual cortex. If “where” information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many response properties in primary auditory cortex (AI) are segregated spatially and organized topographically as those in primary visual cortex. Intensive study has not revealed an intrinsic, anatomical organizing principle related to an AI functional topography. We used retrograde anatomic tracing and topographic physiologic mapping of acoustic response properties to reveal long-range (≥1.5 mm) convergent intrinsic horizontal connections between AI subregions with similar bandwidth and characteristic frequency selectivity. This suggests a modular organization for processing spectral bandwidth in AI.